The Critical Period for Weed 'Seed' Control: The concept and its application

Charles Geddes^{1*}, Teandra Ostendorf¹, Adam Davis², Robert Gulden³, Hiroshi Kubota⁴, William May⁵, Shaun Sharpe⁶ & Breanne Tidemann⁴

¹Lethbridge Research and Development Centre (RDC), Agriculture and Agri-Food Canada (AAFC), Lethbridge, AB; ²Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL; ³Department of Plant Science, University of Manitoba, Winnipeg, MB; ⁴Lacombe RDC, AAFC, Lacombe, AB; ⁵Indian Head Research Farm, AAFC, Indian Head, SK; ⁶Saskatoon RDC, AAFC, Saskatoon, SK *Correspondence: Charles.Geddes@agr.gc.ca

Introduction and Objectives

Increasing herbicide-resistant weed issues globally warrants reevaluation of fundamental weed control objectives. While the mitigation of crop yield loss remains critically important, reducing the proliferation of herbicide-resistant weeds warrants limiting their seed from returning to the soil seedbank¹. The critical period for weed 'seed' control (CPWSC) builds upon the well-accepted concept of the critical period for weed control, or the period of crop must remain weed-free to avoid unacceptable yield losses². Instead, the CPWSC shifts the focus away from the crop and on to problematic weeds. The CPWSC is the period of the growing season during which weed management can mitigate unacceptable weed seed production and return to the soil seedbank³. The CPWSC provides a framework to target problematic weeds during phenological stages critical for seed development. Like the critical period for weed control, the CPWSC is derived from overlapping two component curves: (i) the critical period for weed emergence, and (ii) the critical period for seed production. The objective of this research was to expand on the concept introduced by Geddes and Davis (2021)³ and demonstrate its utility by applying the methodology to seven problematic weed species in western Canada.

Materials and Methods

See Geddes and Davis (2021)³ for the recommended methodology:

Table 1. The date of emergence of seven different weed species resulting in a Table 2. The date on which seed production reached 5% of the maximum potentia reduction in seed production by 95% compared with the maximum potential seed seed production for each of seven different weed species at Lethbridge, AB in production at Lethbridge, AB in 2021. 2021.

Weed species:

- Green foxtail
- Kochia
- Lambsquarters
- Redroot pigweed
- Fallopia convolvulus (L.) Á. Löve • Wild buckwheat
- Wild mustard Sinapis arvensis L.
- Wild oat
 - Avena fatua L.
- **1 Location**: near Lethbridge, AB (49.69°N, -112.76°W) in 2021
- **2 Randomized Complete Block Design** experiments for each species; 4 replicates:
 - Experiment 1: Critical Period for Weed Emergence (CPWE)
 - 10 treatments of different planting dates every 2 weeks starting April 14th

Setaria viridis (L.) P. Beauv.

Chenopodium album L.

Amaranthus retroflexus L.

Bassia scoparia (L.) A.J. Scott

- Experiment 2: Critical Period for Seed Production (CPSP)
 - 10 treatments of different harvest dates every 2 weeks starting June 16th
- Each species was planted at 200 viable seeds m^{-2} in separate 2 m × 2 m plots
- Plots were maintained free of other weed species by hand weeding
- Main measurements:
- Emergence date (i.e., date of 50% emergence)
- Weed seed retention (i.e., seeds retained on the aboveground plant tissue)
- Weed seed shatter (i.e., cumulative seed shatter prior to each harvest date measured using seed catch trays)
- **Total weed seed production** = weed seed retention + weed seed shatter
- Data analysis: Total weed seed production as a percent of the maximum was modelled as a function of cumulative growing degree days for each emergence date (experiment 1) and harvest date (experiment 2) using the 2-parameter log-logistic

production at Loti	10 nugo, nd n zoz r.							
	Emerge	ence date				Harv	vest date	
Weed species	Cumulative GDD, T _{base} 0°C	Calendar date	Julian date	Weed species	Cumulative G	DD, T _{base} 0°C	Calendar date	Julian date
Green foxtail	3005 ± 554	October 02	275	Green foxtail	2026 ±	154	August 03	215
Kochia	2158 ± 359	August 09	221	Kochia	1714 ±	155	July 20	201
Lambsquarters	2381 ± 564	August 21	233	Lambsquarters	1677 ±	292	July 18	199
Redroot pigweed	2670 ± 710	September 07	251	Redroot pigweed	1449 ±	214	July 07	188
Wild buckwheat	1064 ± 106 ^a	June 20	171	Wild buckwheat	1807 ±	309	July 24	205
Wild mustard	1465 ± 173	July 08	189	Wild mustard	1216 ±	112	June 27	178
Wildoat	1685 ± 432	July 18	199	Wildoat	1252 ±	68	June 29	180
A Green fox	tail CPWSC with 20% seed threshold	R Koch	nia CPWSC with 2	0% seed threshold	C	l ambsquarters Cl	PWSC with 20% seed	threshold
(m) 100 80 60 60 40 20 20% Seed thresh	GDD = 1961	20% Seed	threshold	GDD = 2089	20%	6 Seed threshold	GDD = 1632 GDD = 2061	•
D Redroot p	bigweed CPWSC with 20% seed thres	hold <mark>E</mark> Wild	buckwheat CPWS	SC with 20% seed thres	hold F	Wild mustard CPV	VSC with 20% seed th	reshold
tion (% of maximum)	GDD = 1712 GDD = 1802		GDD = 985	GDD = 2089		GDD = 1212 GDD = 1306		•

model in the 'drc' package of R v. 4.2.1⁴

 $y = \{100/1 + \exp[b(\log x - \log e)]\}$

y = seed production (%) $x = \text{cumulative GDD} (T_{\text{base}} 0^{\circ}\text{C})$ b = slope of the response curve at ee = response curve inflection point

The CPWE and CPSP models were overlaid to plot the CPWSC for each weed species using the 'ggplot2' package of R v. 4.2.1⁴

Results and Discussion

- Some weed species produced a substantial amount of seed from late emerging cohorts while others did not. For example, a 95% decline in seed production compared with early-emerging cohorts ranged among species from emergence dates as late as June 20 (1064 GDD, $T_{base} = 0^{\circ}C$) for wild buckwheat to October 02 (3005) GDD) for green foxtail (Table 1).
- The beginning of seed production (5% threshold) ranged among species from June 27 (1216 GDD) for wild mustard to August 03 (2026 GDD) for green foxtail (Table 2).
- Seed production of green foxtail, kochia, lambsquarters, redroot pigweed, wild buckwheat, wild mustard, and wild oat could be reduced by a maximum of 85.2%, 90.6%, 88.2%, 81.9%, 99.9%, 86.4%, and 78.5%, respectively (Fig. 1; Tables 3 & 4).
- The CPWSC at a 20% seed threshold ranged from July 31 to August 12 (1961–2210) GDD) for green foxtail, July 12 to August 06 (1543–2089 GDD) for kochia, July 16 to August 05 (1632–2061 GDD) for lambsquarters, July 20 to July 24 (1712–1803) GDD) for redroot pigweed, June 15 to August 06 (985–2089 GDD) for wild buckwheat, June 27 to July 01 (1212–1306 GDD) for wild mustard, and was

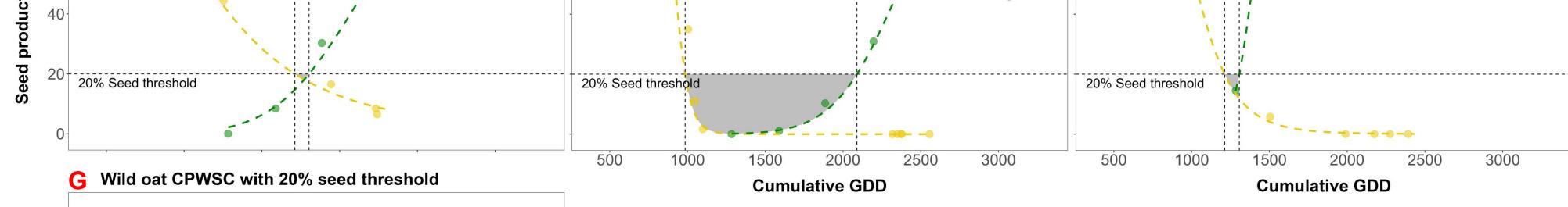


Figure 1. The critical period for weed seed control (CPWSC) for green foxtail (A), kochia (B), lambsquarters (C), redroot pigweed (D), wild buckwheat (E), wild mustard (F), and wild oat (G) with a 20% seed threshold showing the period of the growing season during which management can minimize weed seed production. Dots indicate mean seed production as a percentage of the maximum potential seed production for the critical period for weed emergence (yellow) and critical period for seed production (green) at Lethbridge, AB in 2021. The grey shaded area indicates the CPWSC.

Table 3. Parameter estimates defining the critical period for weed emergence (CPWE) and critical period for seed production (CPSP) for each of seven different weed species at Lethbridge, AB in 2021.

C
0

		CPWE		CPSP			
Weed species	b	e	RMSE	b	е	RMSE	
Green foxtail	3.6 ± 0.73	1341 ± 95.2	22.0	-17.9 ± 7.56	2388 ± 41.3	18.6	
Kochia	4.6 ± 1.18	1145 ± 76.7	20.9	-7.9 ± 1.73	2490 ± 64.5	19.8	
Lambsquarters	4.1 ± 1.31	1167 ± 106.4	29.6	-7.5 ± 3.09	2476 ± 124.0	36.5	
Redroot pigweed	3.5 ± 0.92	1152 ± 99.3	26.9	-7.1 ± 2.11	2190 ± 116.2	31.6	
Wild buckwheat	20.1 ± 11.19	919± 28.7	29.4	-10.7 ± 6.07	2377 ± 111.1	38.3	
Wild mustard	8.2 ± 2.44	1024 ± 34.4	17.1	-21.7 ± 19.41	1392 ± 110.1	34.3	
Wildoat	7.6 ± 4.17	1144 ± 78.8	21.6	-20.5 ± 5.98	1446 ± 38.2	14.3	

Table 4. Target dates for optimal management of weed seed production for each Table 5. The critical period for weed seed control (CPWSC) with a 20% seed

ximum) (T_{base} 0°C 8% 2167 4% 1867	C) calendar date August 10 July 28	Julian date 222 209	Weed species Green foxtail	(T _{base} 0°C) 1961 – 2210	range July 31 – August 12	range 212 – 22
	0				July 31 – August 12	212 – 22
4% 1867	July 28	200				
		203	Kochia	1543 – 2089	July 12 – August 06	193 – 21
8% 1898	July 29	210	Lambsquarters	1632 – 2061	July 16 – August 05	197 – 21
1% 1772	July 23	204	Redroot pigweed	1712 – 1803	July 20 – July 24	201 – 20
1% 1282	June 30	181	Wild buckwheat	985 – 2089	June 15 – August 06	166 – 21
6% 1282	June 30	181	Wild mustard	1212 – 1306	June 27 – July 01	178 – 18
5% 1357	July 03	184	Wildoat	N/A	N/A	N/A
1	1%17721%12826%1282	1%1772July 231%1282June 306%1282June 30	1%1772July 232041%1282June 301816%1282June 30181	1%1772July 23204Redroot pigweed1%1282June 30181Wild buckwheat6%1282June 30181Wild mustard	1%1772July 23204Redroot pigweed1712 – 18031%1282June 30181Wild buckwheat985 – 20896%1282June 30181Wild mustard1212 – 1306	1%1772July 23204Redroot pigweed1712 – 1803July 20 – July 241%1282June 30181Wild buckwheat985 – 2089June 15 – August 066%1282June 30181Wild mustard1212 – 1306June 27 – July 01

nonexistent for wild oat [minimum seed threshold of 21.5% by targeting July 03 (1357 GDD)] (Fig. 1; Tables 3, 4 & 5).

Conclusions

The current study showed that the CPWSC concept can be applied successfully to limit weed seed production and return to the soil seedbank for a range of summerannual weed species in western Canada.

Further research aims to repeat this study at ten environments across western Canada to determine the CPWSC for these seven weed species and how it is affected by contrasting environmental conditions and production systems.

¹ Norsworthy *et al.* 2012. Weed Sci. **60**:31-62 ² Knezevic and Datta. 2015. *Weed Sci.* **63**:188-202 ³ Geddes and Davis. 2021. Weed Res. 61:282-287 ⁴ R Core Team. 2019. Vienna, AU.

